直角三角形斜边上的中线(直角三角形斜边上的中线等于斜边的一半)

直角三角形斜边上的中线(直角三角形斜边上的中线等于斜边的一半)

– 这是果爸的2022年第 012期分享 –

昨天我们探究以矩形为背景的最值问题,今天我们来学习下矩形中另外一个重要的性质:直角三角形斜边上的中线等于斜边的一半。

关于直角三角形斜边上的中线,有三个重要的结论:

直角三角形斜边上的中线(直角三角形斜边上的中线等于斜边的一半)

接下来我们来看下几道关于直角三角形斜边上中线的典型综合题。首先我们来看下遇到直角三角形斜边上的中点,构造直角三角形斜边上的中线来解决问题,题目如下:

直角三角形斜边上的中线(直角三角形斜边上的中线等于斜边的一半)

研题策略:已知∠AEB=∠AFB=90°及O是AB的中点,则连接OE,OF可得出OE,OF都等于AB的一半,可知△OEF,△AFO,△AOE为等腰三角形(模型中图2情况),结合三角形外角定理可得∠FOB=2∠FAB,∠EOB=2∠EAO,则可求出∠FOE的度数,又因为OE=OF可得∠EFO=∠OEF,根据三角形内角和180°,即可求出∠OEF的度数,具体过程如下:

直角三角形斜边上的中线(直角三角形斜边上的中线等于斜边的一半)

第二小题连接OF后,同样会得到△AOF,△AOE,△OEF为等腰三角形(模型中的图3情况),结合三角形的三角形定理和内角和,即可求出∠OEF的度数,思路与第一小题相同,在这里不再赘述,具体过程如下:

直角三角形斜边上的中线(直角三角形斜边上的中线等于斜边的一半)

接下来我们来看下第二题,原题如下:

直角三角形斜边上的中线(直角三角形斜边上的中线等于斜边的一半)

第二题主要考察直角三角形中,取斜边中点构造斜边上中线来进行线段等量代换。根据∠C=90°,AD//BC可得△EAD为直角三角形,题目要求证DE=2AB,我们会发现DE是直角三角形的斜边,所以我们只需要取DE中点F,连接AF即可得到DE=2AF,题目就转化成求证DE=AB,只需要运用等角对等边即可求助求证DE=AB,具体过程如下:

直角三角形斜边上的中线(直角三角形斜边上的中线等于斜边的一半)

接着我们继续来看一道遇到直角三角形通过构造直角三角形斜边上的中线来求证线段数量关系的题目,原题如下:

直角三角形斜边上的中线(直角三角形斜边上的中线等于斜边的一半)

本题要求证CD等于BE的一半,我们会发现BE是直角三角形的斜边,只需构造斜边上的中线DF,求证DF=DC即可,只需求证∠DFC=∠C即可得到DF=DC,所以问题就转化成求证∠DFC=∠C,又因为AB=AC,则只需要求证∠DFC=∠ABC问题也就变得非常简单了,具体解题过程如下:

直角三角形斜边上的中线(直角三角形斜边上的中线等于斜边的一半)

最后我们来看两道遇到共斜边的直角三角形,取斜边中点,分别连双中线进行线段等量代换的题目,原题如下:

直角三角形斜边上的中线(直角三角形斜边上的中线等于斜边的一半)

先来看下第一小题,我们会发现O是BC的中点,而BC既是直角△BEC的斜边,也是直角△BDC的斜边,连接OD,可得OD=OE,即△OED为等腰三角形,只需要求证∠EOD=60°,则可得到DE=OE,具体解题过程如下:

直角三角形斜边上的中线(直角三角形斜边上的中线等于斜边的一半)

接着来看下第二小题,第二小题其实如果对刚才出现的三大模型熟悉的话,辅助线非常容易构造,即连接EM,DE,则EM=DM,且都等于BC的一半,即△MED为等腰三角形,又因为N是DE的中点,即可求得MN⊥DE,过程如下:

直角三角形斜边上的中线(直角三角形斜边上的中线等于斜边的一半)

第二小题的第二小问其实也相对比较简单,只需要求证三角形MDE为等边三角形,即可得出MN与DE之间的数量关系。具体过程如下:

直角三角形斜边上的中线(直角三角形斜边上的中线等于斜边的一半)

通过今天的学习希望孩子们掌握直角三角形斜边上的中线的三大模型以及对应的解题策略,明天我们继续努力

——END——

本文作者:果爸,典型的闽南人,大学毕业后不务正业进入培训圈,从事一线教学和教研工作,创过业带过团队,现在二次创业中,有兴趣的朋友可以多多关注!本文首发于少儿数学思维,转载请联系原作者。

更多精彩,请关注我们

关注公众号,获取更多的内容资源

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至89291810@qq.com举报,一经查实,本站将立刻删除。
(0)
上一篇 2024年4月18日 下午1:04
下一篇 2024年4月18日 下午1:10

相关推荐

  • 刘邦之后谁继位排序表

    刘邦之后谁继位排序表 刘邦是汉朝的开国皇帝,他在位期间开创了汉朝的繁荣时期。他的继承人是谁?在刘邦之后,有许多强有力的人物试图继承他的皇位,但是最终只有几位成功地实现了自己的目标。…

    教育百科 2025年1月11日
  • 青海的教育怎么样(青海孩子厌学叛逆哪个学校好)

    青海孩子厌学叛逆哪个学校好 近年来,青海的教育事业取得了长足的进步,但同时也面临着一些问题。其中,青海孩子厌学叛逆的问题不容忽视。针对这一问题,哪个学校能够真正解决青海孩子厌学叛逆…

    教育百科 2024年9月9日
  • 不想上学的说说

    不想上学的说说 最近,我陷入了一种不想上学的困境。我不知道该怎么办,我不想面对课本和教师。我甚至不想去面对学校。我不知道这是怎么回事,但我决定写下这篇说说,希望能够得到帮助。 我曾…

    教育百科 2024年8月22日
  • 赣州中学放假通知(赣州中学2017届休学)

    作为赣州中学2017届休学的学生,我经历了一段非凡的经历。在那段期间,我离开了学校,经历了许多挑战和困难,但最终我学会了如何面对它们。 2017年,我选择了休学。在休学期间,我经历…

    教育百科 2024年6月20日
  • 大四临近毕业申请休学(大四办理休学毕业论文)

    大四办理休学毕业论文 作为大四学生,我们经历了一年的本科学习,即将迎来关键的毕业论文写作阶段。然而,由于身体原因,我不得不办理休学,暂停学业,全身心地照顾自己的身体。在这个特殊的时…

    教育百科 2024年5月2日
  • 上海一00后休学两年

    上海一00后休学两年,成为了网络上备受瞩目的人物。这位年轻人叫做王浩,是上海市一所中学的00后学生。他因为长期患有心理疾病,决定休学两年来治疗自己。这个决定引起了很多人的关注和讨论…

    教育百科 2025年3月13日
  • 孩子自私念什么佛经好

    孩子自私是许多父母都面临的问题,这可能是由于孩子缺乏同理心、责任感或者其他因素造成的。如果帮助孩子改变这种行为,可以参考下述佛经: 《药师经》 《药师经》中提到:“药师琉璃光佛,愿…

    教育百科 2024年11月5日
  • 高三休学在家学(高三休学打游戏)

    高三休学打游戏 作为一名高三学生,我曾经经历过无数种挑战和困难,但最让我印象深刻的,是我在高三的时候选择了休学,去打游戏。 当时,我对高考充满了恐惧,感觉自己无论如何都无法达到自己…

    教育百科 2024年7月13日
  • 职业网瘾

    职业网瘾:你是否了解它? 随着互联网的普及,越来越多的人开始沉迷于网络世界中。有些人甚至将网络成瘾视为一种职业,这种现象被称为职业网瘾。然而,你是否了解职业网瘾? 职业网瘾是指一个…

    教育百科 2025年4月9日
  • 初三的学生不想上学怎么办(学生不想上学怎么办)

    学生不想上学怎么办? 作为学生,你可能会遇到不想上学的情况。这可能是由于许多原因引起的,例如学习压力、家庭问题、社交焦虑等等。如果你遇到了这种情况,以下是一些可以帮助你应对的方法:…

    教育百科 2025年1月2日

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注